Single-Particle Detection of Transcription following Rotavirus Entry
نویسندگان
چکیده
Infectious rotavirus particles are triple-layered, icosahedral assemblies. The outer layer proteins, VP4 (cleaved to VP8* and VP5*) and VP7, surround a transcriptionally competent, double-layer particle (DLP), which they deliver into the cytosol. During entry of rhesus rotavirus, VP8* interacts with cell-surface gangliosides, allowing engulfment into a membrane vesicle by a clathrin-independent process. Escape into the cytosol and outer-layer shedding depend on interaction of a hydrophobic surface on VP5* with the membrane bilayer and on a large-scale conformational change. We report here experiments that detect the fate of released DLPs and their efficiency in initiating RNA synthesis. By replacing the outer layer with fluorescently tagged, recombinant proteins and also tagging the DLP, we distinguish particles that have lost their outer layer and entered the cytosol (uncoated) from those still within membrane vesicles. We used fluorescent in situ hybridization with probes for nascent transcripts to determine how soon after uncoating transcription began and what fraction of the uncoated particles were active in initiating RNA synthesis. We detected RNA synthesis by uncoated particles as early as 15 minutes after adding virus. Uncoating efficiency was 20-50%; of the uncoated particles, about 10% synthesized detectable RNA. In the format of our experiments, about 1% of the added particles attached to the cell surface, giving an overall added-particle to RNA-synthesizing particle ratio of between 1000 and 5000 to 1, in good agreement with the particle-to-focus-forming unit determined by infectivity assays. Thus, RNA synthesis by even a single, uncoated particle can initiate infection in a cell.IMPORTANCE The pathways by which a virus enters a cell transform its packaged genome into an active one. Contemporary fluorescence microscopy can detect individual virus particles as they enter cells, allowing us to map their multi-step entry pathways. Rotaviruses, like most viruses that lack membranes of their own, disrupt or perforate the intracellular, membrane-enclosed compartment into which they become engulfed following attachment to a cell surface, in order to gain access to the cell interior. The properties of rotavirus particles make it possible to determine molecular mechanisms for these entry steps. In the work described here, we have asked the following question: what fraction of the rotavirus particles that penetrate into the cell make new viral RNA? We find that of the cell-attached particles, between 20 and 50% ultimately penetrate, and of these, about 10% make RNA. RNA synthesis by even a single virus particle can initiate a productive infection.
منابع مشابه
Characterization and Transferring of Human Rotavirus Double-Layered Particles in MA104 Cells
BACKGROUND Rotavirus (RV) is a major cause of gastroenteritis in infants and children and is one of the most severe public health problems. Rotaviruses outer layer contains two proteins including VP4 and VP7. These proteins are necessary for host-cell binding and penetration. TLP (triple layer virus particle) of RV is a complete infectious virion that binds to the target cells and internalized ...
متن کاملAtomic model of an infectious rotavirus particle.
Non-enveloped viruses of different types have evolved distinct mechanisms for penetrating a cellular membrane during infection. Rotavirus penetration appears to occur by a process resembling enveloped-virus fusion: membrane distortion linked to conformational changes in a viral protein. Evidence for such a mechanism comes from crystallographic analyses of fragments of VP4, the rotavirus-penetra...
متن کاملStructural Correlates of Rotavirus Cell Entry
Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex--for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼ 700 Å inner capsid particle ("double-layered particle", DLP). We label with distinct fluorescent tags the DLP and each ...
متن کاملA Real-Time RT-PCR Assay for Genotyping of Rotavirus Strains
Background: Human rotavirus (HRV) is the causative agent of severe gastroenteritis in children and responsible for two million hospitalizations and more than a half-million deaths annually. Sequence characteristics of the gene segments encoding the VP7 and VP4 proteins are used for the genotype classification of rotavirus. A wide variety of molecular methods are available, mainly based on rever...
متن کاملDevelopment of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses
Background and objective:Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 91 شماره
صفحات -
تاریخ انتشار 2017